KOD PESEL miejsce. na naklejkę. EGZAMIN MATURALNY. Z MATEMATYKI. UZUPEŁNIA ZESPÓŁ. POZIOM ROZSZERZONY NADZORUJĄCY. Uprawnienia zdającego do: DATA: 5 czerwca 2018 r. dostosowania. NOWA FORMUŁA.
Witaj! Mam nadzieję, że spodobał Ci się film i dostałeś informacje, których szukałeś.PKT.1 - 00:59PKT.2 - 2:27PKT.3 - 4:40PKT.4 - 7:47
Strona 4 z 18 MAD-1A TASK 4. (0–7) Read two texts about the beginning of student life. For questions 4.1.–4.7., choose the answer that best matches the text and circle the appropriate letter (A, B, C or D). Text 1 THE ARRIVAL “David,” my mother said, “we are here.”
Wykonaj polecenia a) – e). Każdą odpowiedź umieść w pliku o nazwie zad_4.txt poprzedzając ją oznaczeniem odpowiedniego punktu. a) Podaj liczby kobiet i mężczyzn wśród kandydatów. Możesz wykorzystać fakt, że w danych imiona wszystkich kobiet (i tylko kobiet) kończą się literą „a”.
Wykaż, że obwód takiego trapezu, jako funkcja długości dłuższej podstawy trapezu, wyraża się wzorem. Oblicz tangens kąta ostrego tego spośród rozpatrywanych trapezów, którego obwód jest najmniejszy. Matura 2018 z matematyki, poziom rozszerzony - pełne rozwiązania wszystkich zadań, treści zadań, Matura 2018, 68129.
A. 36 B. 8 C. 4 D. 16. Zad.1.11. (1pkt.) Liczbę 4,2 ⋅ 10 −6 moŜna zapisać: Matura-AKE-maj-2022-1. Matura-AKE-maj-2022-1. matura probna 2018. matura
. Przejdź do treściAkademia Matematyki Piotra CiupakaMatematyka dla licealistów i maturzystów Strona głównaDlaczego warto?O mnieOpinieKontaktChce dołączyć!Opublikowane w przez Matura maj 2018 zadanie 7 Równanie 0 4 2 2 2 = − + x x x A. ma trzy rozwiązania: x = − 2 , x = 0 , x = 2Równanie 0 4 2 2 2 = − + x x x A. ma trzy rozwiązania: x = − 2 , x = 0 , x = 2Chcę dostęp do Akademii! Dodaj komentarz Musisz się zalogować, aby móc dodać wpisuPoprzedni wpis Matura maj 2018 zadanie 6 Funkcja kwadratowa jest określona wzorem . Liczby 1 x , 2 x są różnymi miejscami zerowymi funkcji f. ZatemNastępny wpis Matura maj 2018 zadanie 8 Funkcja liniowa f określona jest wzorem 1 3 f (x) = 1 x − , dla wszystkich liczb rzeczywistych x. Wskaż zdanie prawdziwe. A. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie = 3 P 0, 1 .
Podstawowa matura z matematyki – Maj 2018 CKE Zadanie 1. (0-1) Liczba 2loga36-log34 jest równa A. 4 B. 2 C. 2log32 D. log38 Zobacz na stronie Zobacz na YouTube Zadanie 2. (0-1) Liczba \(\sqrt[3]{\frac{7}{3}}\cdot \sqrt[3]{\frac{81}{56}}\) jest równa A. \(\frac{\sqrt{3}}{2}\) B. \(\frac{3}{2\sqrt[3]{21}}\) C. \(\frac{3}{2}\) D. \(\frac{9}{4}\) Zobacz na stronie Zobacz na YouTube Zadanie 3. (0-1) Dane są liczby a=3,6⋅10−12 oraz b=2,4⋅10−20. Wtedy iloraz \(\frac{a}{b}\) jest równy A. 8,64⋅10−32 B. 1,5⋅10−8 C. 1,5⋅108 D. 8,64⋅1032 Zobacz na stronie Zobacz na YouTube Zadanie 4. (0-1) Cena roweru po obniżce o 15% była równa 850 zł. Przed obniżką ten rower kosztował A. 865,00 zł B. 850,15 zł C. 1000,00 zł D. 977,50 zł Zobacz na stronie Zobacz na YouTube Zadanie 5. (0-1) Zbiorem wszystkich rozwiązań nierówności \(\frac{1-2x}{2}>\frac{1}{3}\) jest przedział A. \(\left( -\infty ,\frac{1}{6} \right)\) B. \(\left( -\infty ,\frac{2}{3} \right)\) C. \(\left( \frac{1}{6},+\infty \right)\) D. \(\left( \frac{2}{3},+\infty \right)\) Zobacz na stronie Zobacz na YouTube Zadanie 6. (0-1) Funkcja kwadratowa jest określona wzorem f(x)=-2(x+3)(x-5). Liczby x1, x2 są różnymi miejscami zerowymi funkcji f. Zatem A. x1 + x2 = −8 B. x1 + x2 = −2 C. x1 + x2 = 2 D. x1 + x2 = 8 Zobacz na stronie Zobacz na YouTube Zadanie 7. (0-1) Równanie \(\frac{{{x}^{2}}+2x}{{{x}^{2}}-4}=0\) A. ma trzy rozwiązania: x = − 2 , x = 0 , x = 2 B. ma dwa rozwiązania: x = 0 , x = − 2 C. ma dwa rozwiązania: x = − 2 , x = 2 D. ma jedno rozwiązanie: x = 0 Zobacz na stronie Zobacz na YouTube Zadanie 8. (0-1) Funkcja liniowa f określona jest wzorem \(f\left( x \right)=\frac{1}{3}x-1\) , dla wszystkich liczb rzeczywistych x. Wskaż zdanie prawdziwe. A. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,\frac{1}{3} \right)\) B. Funkcja f jest malejąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,-1 \right)\) C. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,\frac{1}{3} \right)\) D. Funkcja f jest rosnąca i jej wykres przecina oś Oy w punkcie \(P=\left( 0,-1 \right)\) Zobacz na stronie Zobacz na YouTube Zadanie 9. (0-1) Wykresem funkcji kwadratowej f(x)=x2−6x−3 jest parabola, której wierzchołkiem jest punkt o współrzędnych A. (−6, −3) B. (−6, 69) C. (3, −12) D. (6, −3) Zobacz na stronie Zobacz na YouTube Zadanie 10. (0-1) Liczba 1 jest miejscem zerowym funkcji liniowej f(x)=ax+b , a punkt M=(3,−2) należy do wykresu tej funkcji. Współczynnik a we wzorze tej funkcji jest równy A. 1 B. \(\frac{3}{2}\) C. \(-\frac{3}{2}\) D. -1 Zobacz na stronie Zobacz na YouTube Zadanie 11. (0-1) Dany jest ciąg (an) określony wzorem \({{a}_{n}}=\frac{5-2n}{6}\) dla n≥1. Ciąg ten jest A. arytmetyczny i jego różnica jest równa \(r=-\frac{1}{3}\) B. arytmetyczny i jego różnica jest równa r = −2 C. geometryczny i jego iloraz jest równy \(r=-\frac{1}{3}\) D. geometryczny i jego iloraz jest równy \(r=\frac{5}{6}\) Zobacz na stronie Zobacz na YouTube Zadanie 12. (0-1) Dla ciągu arytmetycznego (an), określonego dla n≥1, jest spełniony warunek a4+a5+a6=12. Wtedy A. a5=4 B. a5=3 C. a5=6 D. a5=5 Zobacz na stronie Zobacz na YouTube Zadanie 13. (0-1) Dany jest ciąg geometryczny (an) , określony dla n≥1, w którym \({{a}_{1}}=\sqrt{2}\) ,\({{a}_{2}}=2\sqrt{2}\) , \({{a}_{3}}=4\sqrt{2}\). Wzór na n-ty wyraz tego ciągu ma postać A. \({{a}_{n}}={{\left( \sqrt{2} \right)}^{2}}\) B. \({{a}_{n}}=\frac{{{2}^{n}}}{\sqrt{2}}\) C. \({{a}_{n}}={{\left( \frac{\sqrt{2}}{2} \right)}^{n}}\) D. \({{a}_{n}}=\frac{{{\left( \sqrt{2} \right)}^{n}}}{2}\) Zobacz na stronie Zobacz na YouTube Zadanie 14. (0-1) Przyprostokątna LM trójkąta prostokątnego KLM ma długość 3, a przeciwprostokątna KL ma długość 8 (zobacz rysunek). Wtedy miara α kąta ostrego LKM tego trójkąta spełnia warunek A. 27° b. Kąt KLM ma miarę 60°. Długość ramienia LM tego trapezu jest równa A. a − b B. 2(a − b) C. \(a+\frac{1}{2}b\) D. \(\frac{a+b}{2}\) Treść dostępna po opłaceniu abonamentu. Zadanie 18. (0-1) Punkt K=(2,2) jest wierzchołkiem trójkąta równoramiennego KLM, w którym |KM|=|LM|. Odcinek MN jest wysokością trójkąta i N=(4,3) . Zatem A. L = (5, 3) B. L = (6, 4) C. L = (3, 5) D. L = (4, 6) Treść dostępna po opłaceniu abonamentu. Zadanie 19. (0-1) Proste o równaniach y=(m+2)x+3 oraz y=(2m−1)x−3 są równoległe, gdy A. m = 2 B. m = 3 C. m = 0 D. m =1 Treść dostępna po opłaceniu abonamentu. Zadanie 20. (0-1) Podstawą ostrosłupa jest kwadrat KLMN o boku długości 4. Wysokością tego ostrosłupa jest krawędź NS, a jej długość też jest równa 4 (zobacz rysunek). Kąt α , jaki tworzą krawędzie KS i MS, spełnia warunek A. α = 45° B. 45° 60° D. α = 60° Treść dostępna po opłaceniu abonamentu. Zadanie 21. (0-1) Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt α , jaki przekątna tego graniastosłupa tworzy z jego podstawą, jest równy 45° (zobacz rysunek). Wysokość graniastosłupa jest równa A. 5 B. \(3\sqrt{2}\) C. \(5\sqrt{2}\) D. \(\frac{5\sqrt{3}}{3}\) Treść dostępna po opłaceniu abonamentu. Zadanie 22. (0-1) Na rysunku przedstawiono bryłę zbudowaną z walca i półkuli. Wysokość walca jest równa r i jest taka sama jak promień półkuli oraz taka sama jak promień podstawy walca. Objętość tej bryły jest równa A. \(\frac{5}{3}\pi {{r}^{3}}\) B. \(\frac{4}{3}\pi {{r}^{3}}\) C. \(\frac{2}{3}\pi {{r}^{3}}\) D. \(\frac{1}{3}\pi {{r}^{3}}\) Treść dostępna po opłaceniu abonamentu. Zadanie 23. (0-1) W zestawie \(\underbrace{2,2,2,…,2,}_{m\,\quad liczb}\underbrace{4,4,4,…,4,}_{m\quad liczb}\) jest 2m liczb (m≥1) , w tym m liczb 2 i m liczb 4. Odchylenie standardowe tego zestawu liczb jest równe A. 2 B. 1 C. \(\frac{1}{\sqrt{2}}\) D. \(\sqrt{2}\) Treść dostępna po opłaceniu abonamentu. Zadanie 24. (0-1) Ile jest wszystkich liczb naturalnych czterocyfrowych mniejszych od 2018 i podzielnych przez 5? A. 402 B. 403 C. 203 D. 204 Treść dostępna po opłaceniu abonamentu. Zadanie 25. (0-1) W pudełku jest 50 kuponów, wśród których jest 15 kuponów przegrywających, a pozostałe kupony są wygrywające. Z tego pudełka w sposób losowy wyciągamy jeden kupon. Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kupon wygrywający, jest równe A. \(\frac{15}{35}\) B. \(\frac{1}{50}\) C. \(\frac{15}{50}\) D. \(\frac{35}{50}\) Treść dostępna po opłaceniu abonamentu. Zadanie 26. (0-1) Rozwiąż nierówność 2x2-3x>5 Treść dostępna po opłaceniu abonamentu. Zadanie 27. (0-1) Rozwiąż równanie (x3+125)(x2−64)=0. Treść dostępna po opłaceniu abonamentu. Zadanie 28. (0-1) Udowodnij, że dla dowolnych liczb dodatnich a, b prawdziwa jest nierówność \(\frac{1}{2a}+\frac{1}{2b}\ge \frac{2}{a+b}\) Treść dostępna po opłaceniu abonamentu. Zadanie 29. (0-1) Okręgi o środkach odpowiednio A i B są styczne zewnętrznie i każdy z nich jest styczny do obu ramion danego kąta prostego (zobacz rysunek). Promień okręgu o środku A jest równy 2. Uzasadnij, że promień okręgu o środku B jest mniejszy od \(\sqrt{2}-1\). Treść dostępna po opłaceniu abonamentu. Zadanie 30. (0-1) Do wykresu funkcji wykładniczej, określonej dla każdej liczby rzeczywistej x wzorem f(x)=ax (gdzie a>0 i a≠1), należy punkt P=(2,9). Oblicz a i zapisz zbiór wartości funkcji g, określonej wzorem g(x)=f(x)−2. Treść dostępna po opłaceniu abonamentu. Zadanie 31. (0-1) Dwunasty wyraz ciągu arytmetycznego (an), określonego dla n≥1, jest równy 30, a suma jego dwunastu początkowych wyrazów jest równa 162. Oblicz pierwszy wyraz tego ciągu. Treść dostępna po opłaceniu abonamentu. Zadanie 32. (0-1) W układzie współrzędnych punkty A=(4,3) i B=(10,5) są wierzchołkami trójkąta ABC. Wierzchołek C leży na prostej o równaniu y=2x+3. Oblicz współrzędne punktu C, dla którego kąt ABC jest prosty. Treść dostępna po opłaceniu abonamentu. Zadanie 33. (0-1) Dane są dwa zbiory: A ={100, 200, 300, 400, 500, 600, 700} i B ={10,11,12,13,14,15,16}. Z każdego z nich losujemy jedną liczbę. Oblicz prawdopodobieństwo zdarzenia polegającego na tym, że suma wylosowanych liczb będzie podzielna przez 3. Obliczone prawdopodobieństwo zapisz w postaci nieskracalnego ułamka zwykłego. Treść dostępna po opłaceniu abonamentu. Zadanie 34. (0-1) Dany jest graniastosłup prawidłowy trójkątny (zobacz rysunek). Pole powierzchni całkowitej tego graniastosłupa jest równe \(45\sqrt{3}\). Pole podstawy graniastosłupa jest równe polu jednej ściany bocznej. Oblicz objętość tego graniastosłupa. Treść dostępna po opłaceniu abonamentu. Bądź na bieżąco z
Dany jest trójkąt o bokach długości $2\sqrt{5},\ 3\sqrt{5},\ 4\sqrt{5}$. Trójkątem podobnym do tego trójkąta jest trójkąt, którego boki mają długościA. $10,\ 15,\ 20$B. $20,\ 45, 80$C. $\sqrt{2},\ \sqrt{3},\ \sqrt{4}$D. $\sqrt{5},\ 2\sqrt{5},\ 3\sqrt{5}$ Dany jest okrąg o środku $S$. Punkty $K$, $L$ i $M$ leżą na tym okręgu. Na łuku $KL$ tego okręgu sąoparte kąty $KSL$ i $KML$ (zobacz rysunek), których miary α i β spełniają warunekα +β =111° . Wynika stąd, żeA. $\alpha=74^\circ$B. $\alpha=76^\circ$C. $\alpha=70^\circ$D. $\alpha=72^\circ$ Dany jest trapez prostokątny $KLMN$, którego podstawy mają długości $|KL| = a$ , $|MN| = b$ ,$a > b$ . Kąt $KLM$ ma miarę 60° . Długość ramienia $LM$ tego trapezu jest równaA. $a-b$B. $2(a-b)$C. $a+\frac{1}{2}b$D. $\frac{a+b}{2}$ Punkt $K=(2,2)$ jest wierzchołkiem trójkąta równoramiennego $KLM$, w którym $|KM|=|LM|$. Odcinek $MN$ jest wysokością trójkąta i $N=(4,3)$. Zatem A. $L=(5,3)$B. $L=(6,4)$C. $L=(3,5)$D. $L=(4,6)$ Proste o równaniach $y=(m+2)x+3$ oraz $y=(2m-1)x-3$ są równoległe, gdyA. $m=2$B. $m=3$C. $m=0$D. $m=1$ Podstawą ostrosłupa jest kwadrat $KLMN$ o boku długości tego ostrosłupa jest krawędź $NS$, a jej długość też jest równa 4 (zobacz rysunek).Kąt $\alpha$ jaki tworzą krawędzie $KS$ i $MS$, spełnia warunekA. $\alpha=45^\circ$B. $45^\circ60^\circ$D. $\alpha=60^\circ$ Podstawą graniastosłupa prostego jest prostokąt o bokach długości 3 i 4. Kąt $\alpha$, jaki przekątna tego graniastosłupa tworzy z jego podstawą jest równy $45^\circ$ (zobacz rysunek).Wysokość graniastosłupa jest równaA. $5$B. $3\sqrt{2}$C. $5\sqrt{2}$D. $\frac{5\sqrt{3}}{3}$
Czas czytania: 4 minutPostanowiłem, że obok wpisów na temat bardziej zaawansowanych zakamarków języka C++ postaram się przysłużyć co nieco maturzystom. A w związku z tym na blogu pojawi się niebawem seria wpisów, w których będziemy analizowali zadania maturalne z ubiegłych lat. Na pierwszy ogień pójdą polecenia wymagające programowania. Językiem, w którym będziemy kodowali rozwiązania będzie oczywiście C++. Jest to język prostszy, logiczniejszy i dający lepszą podstawę do nauki innych niż Python. Dlatego polecam właśnie C++ 🙂 No ale skończmy już te dyrdymały i przejdźmy do zadania na dziś 🙂 Arkusz dostępny jest tutaj. Odpowiedzi do niego natomiast: tutaj W ramach projektu WEGA naukowcom udało się odczytać sygnały radiowe pochodzące z przestrzeni kosmicznej. Po wstępnej obróbce zapisali je do pliku W pliku znajduje się 1000 wierszy. Każdy wiersz zawiera jedno niepuste słowo złożone z wielkich liter alfabetu angielskiego. Długość jednego słowa nie przekracza 100 znaków. Napisz program(y) które dadzą odpowiedzi do poniższych zadań. Odpowiedzi zapisz w pliku a każdą odpowiedź poprzedź numerem oznaczającym odpowiednie zadanie. Uwaga:Plik zawiera dane przykładowe spełniające warunki zadania. Odpowiedzi dla danych z pliku są podane pod pytaniami. Zadanie (0-3) Naukowcy zauważyli, że po złączeniu dziesiątych liter co czterdziestego słowa (zaczynając od słowa czterdziestego) otrzymamy pewne przesłanie. Wypisz to przesłanie. Uwaga: Każde co czterdzieste słowo ma co najmniej 10 znaków. Dla danych z pliku wynikiem jest: NIECHCIMATURALEKKABEDZIE Rozwiązanie Jest to dosyć proste zadanie. Najtrudniejszą częścią jest napisanie funkcji, która odczytuje prawidłowo dane z pliku. W kodzie powyżej odpowiada za to readFile. Dane przechowujemy w vectorze przechowującym stringi. Jest to najwygodniejsza metoda. W linijkach 11-16 otwieramy plik i sprawdzamy, czy udało nam się go właściwie otworzyć. Linijki 17-21 to clue funkcji readFile. Odczytujemy plik linia po linii. Pojedynczą linię tekstu przechowujemy w zmiennej tymczasowej line typu string. Gdy odczytamy linijkę tekstu, dodajemy ją na koniec vectora readen. Na samym końcu funkcji zwracamy ten vector. W mainie realizujemy natomiast to, o co nas poprosili twórcy zadania. W pętli for przechodzimy co czterdzieste słowo. Iterator pętli – zmienna i wynosi na początku 39. Dlaczego? Ponieważ w treści zadania napisano, zaczynając od słowa informatyce wszystko numerujemy od zera. Czterdziestym słowem będzie więc te znajdujące się pod indeksem nr 39. Z tego samego powodu zwiększamy wartość zmiennej i za każdym razem o 40. Co się dzieje wewnątrz pętli? Do zmiennej result typu string dodajemy dziesiątą literę tego słowa. (czyli tą znajdującą się pod indeksem nr 9). I to by było na tyle. Odpowiedź do zadania znajduje się w zmiennej result. Możemy ją wyświetlić (tak jak w kodzie powyżej) lub zapisać do pliku. Robimy to, co jest dla nas wygodniejsze. Może kolejne zadanie od CKE będzie nieco ambitniejsze? Zobaczmy 🙂 Zadanie (0-4) Znajdź słowo, w którym występuje największa liczba różnych liter. Wypisz to słowo i liczbę występujących w nim różnych liter. Jeśli słów o największej liczbie różnych liter jest więcej niż jedno, wypisz pierwsze z nich pojawiające się w pliku z danymi. Dla danych z pliku wynikiem jest: AKLMNOPRSTWZA 12 Rozwiązanie Jakie pułapki teraz zastawiła na nas CKE? Funkcji readFile nie omawiam, gdyż jest analogiczna jak w poprzednim zadaniu. Nic się nie zmieniło. 95% pracy wykonywane jest w ramach funkcji getTheMostDifferentWords. Zwraca ona parę, składającą się ze stringa (nasz ciąg znaków) oraz inta (liczba różniących się liter). Funkcja zaczyna się w linijce 35 definicją pary, w której będziemy przechowywali wynik. W linijce 36 widzimy pętlę typu for-each. Przegląda ona linijka po linijce wszystkie pobrane wcześniej dane. Aktualnie analizowana linijka znajduje się w zmiennej word. Linijka 37 to tablica zmiennych typu bool. Przechowujemy w niej informację o tym, czy dana litera wystąpiła w analizowanym słowie. Ważne w tym momencie jest to, że zmienne lokalne mają domyślne wartości losowe. Powinniśmy więc wyzerować tablicę, co robimy w kolejnym wierszu. W następnych dwóch linijkach przechodzimy aktualnie analizowany wiersz tekstu, litera po literze. Każdą napotkaną literę oznaczamy jako używaną w tablicy exist. Możesz zadać pytanie, dlaczego odejmujemy 'A’? Ponieważ tekst, jak wiesz, przechowywany jest w komputerze w formie kodu ASCII. My natomiast potrzebujemy kodowania w formie A=0, B=1 … Z=25. Od kodu aktualnie analizowanej litery musimy więc odjąć literę A. W linijce 42 wywołujemy funkcję calculateNumberOfDiffLetters. Jej definicja znajduje się w linijkach 27-33. Na czym polega ta funkcja? Po prostu zliczamy, ile elementów w tablicy exists ma wartość true. Jeśli ta wartość jest większa od aktualnej największej, przechowywanej w zmiennej theMostDifferent, to aktualizujemy wartości. W przeciwnym wypadku kończymy obieg pętli. Co można powiedzieć o main? Nic specjalnego. Po prostu, wywołujemy wcześniej utworzone funkcje, a następnie wypisujemy na ekran wynik. Zadanie (0-4) W tym zadaniu rozważmy odległość liter w alfabecie – np.: litery A i B są od siebie oddalone o 1, A i E o 4, F – D o 2, a każda litera od siebie samej oddalona jest o 0. Wypisz wszystkie słowa, w których każde dwie litery oddalone są od siebie w alfabecie co najwyżej o 10. Słowa wypisz w kolejności występowania w pliku po jednym w wierszu. Na przykład: CGECF jest takim słowem, ale ABEZA nie jest (odległość A-Z wynosi 25). Tym razem za rozwiązanie naszego zadania odpowiada funkcja selectWordsDiffLessThan10. Przeanalizujmy ją 🙂 W linijce 29 stosujemy pętlę for-each. Przechodzimy vector przechowujący wszystkie odczytane z pliku słowa, przy czym aktualnie analizowane słowo znajduje się w zmiennej word. W linijce 30 utworzyliśmy zmienną add typu bool. Za co ona odpowiada? Przechowujemy w niej informację o tym, czy dany wyraz spełnia warunki postawione przez CKE. Na samym początku przyjmujemy, że wyraz spełnia warunki. A potem szukamy argumentów za tym, aby tę hipotezę obalić 🙂 Linijka 31 i 32 to dwie pętle for. Dlaczego zastosowaliśmy akurat taką konstrukcję? Bo musimy przeanalizować każdą parę liter słowa. Pierwsza pętla przechodzi wszystkie litery słowa. Pierwsza pętla przechodzi cały wiersz, więc naszą granicą jest rozmiar słowa. W drugiej pętli zaczynamy przechodzenie od i+1. Dlaczego? Moglibyśmy zaczynać od i=0. Program nadal generowałby prawidłową odpowiedź. Jednakże wtedy sprawdzamy pary liter, które już zostały zaakceptowane, co jest marnotrawieniem mocy procesora. Na przykład: skoro sprawdziliśmy, że litery znajdujące się na pozycjach 1 i 3 spełniają warunki zadania, to tak samo będą je spełniały litery znajdujące się na pozycjach 3 i 1 (gdyż to te same litery!). Skoro zaczynamy od i+1, to naszą granicą będzie rozmiar słowa-1. Dlaczego? Ponieważ w inny wypadku wyszlibyśmy poza zakres tablicy. (Rozważ przypadek, kiedy zewnętrzna pętla analizuje ostatnią literę słowa). Linijka 33 clue rozwiązania problemu. Sprawdzamy, czy para liter spełnia warunek zadania. Wystarczy zwykłe odjęcie kodów liter. Możesz się zastanowić, po co funkcja abs? Z prostego powodu. Jeśli odejmiemy np.: Z od A, otrzymamy wynik dodatni. Lecz jeśli przeprowadzimy odejmowanie A-Z, wynik będzie miał przeciwny znak. Dla uproszczenia warunku lepiej zastosować funkcję abs, która wyciąga nam wartość bezwzględną z wyniku. Linijki 34 i 39 – po znalezieniu pierwszego słowa niespełniającego warunku przerywamy pętlę. W linijce 41 dodajemy słowo do vectora wynikowego, oczywiście pod warunkiem, że spełnia warunek. W funkcji main wywołujemy utworzone funkcje w odpowiedniej kolejności. Następnie wyprowadzamy wynik na ekran. I to koniec Rozwiązaliśmy zadanie SEGA z ubiegłorocznej (2018) matury. Zdobyliśmy 11 punktów. Prawda, że nie było źle? 🙂 Jeśli wpis ci się podobał, przeprowadzę podobną analizę zadań z programowania z ubiegłorocznych arkuszy. A następnie zaczniemy rozwiązywać zadania z Excela i baz danych. Do zobaczenia 🙂 Życzę powodzenia na maturze 🙂
W przypadku węglowodorów o podobnej strukturze i liczbie atomów węgla temperatura topnienia jest tym wyższa, im więcej elementów symetrii ma cząsteczka związku. Na podstawie: R. J. C. Brown, Melting Point and Molecular Symmetry, J. Chem. Educ. 77 (6), 2000. (1 pkt) Poniżej przedstawiono wzory dwóch węglowodorów – benzenu i toluenu: Temperatura topnienia benzenu (pod ciśnieniem atmosferycznym) wynosi 5,53°C. Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 1997. Oceń, czy temperatura topnienia toluenu pod ciśnieniem atmosferycznym jest wyższa, czy – niższa od 5,53°C. (1 pkt) Dwa izomeryczne butyny, których cząsteczki mają budowę łańcuchową, znacznie się różnią temperaturą topnienia. W poniższej tabeli podano wartość temperatury topnienia (pod ciśnieniem atmosferycznym) każdego z tych izomerów. Uzupełnij tabelę – wpisz wzory półstrukturalne (grupowe) obu izomerycznych butynów przy odpowiedniej wartości temperatury topnienia. Temperatura topnienia pod ciśnieniem atmosferycznym Wzór izomerycznego butynu – 126°C – 32°C Na podstawie: W. Mizerski, Tablice chemiczne, Warszawa 1997.
matura maj 2018 zad 4